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Some properties of a system of hard-core particles with attractive wells in the 
Baxter sticky-sphere limit and a related limit are considered, as is the approach 
to these limits. A demonstration of the result of Stell and Williams that sticky 
spheres of equal diameter in the Baxter limit are not thermodynamically stable 
is given, and the way in which size polydispersity can be expected to restore 
thermodynamic stability is discussed. The implications of these results for the 
PY sticky-sphere approximation and recent sticky-sphere computer simulations 
are then examined. It is concluded that the Baxter PY sticky-sphere approxima- 
tion for a monodisperse system may well be a reasonable one for a slightly 
polydisperse system of sticky spheres and that existing simulation results may 
also be relevant to such a system. How polydisperse a system must be in quan- 
titative terms in order for the PY approximation to be useful remains to be seen, 
however. The question of whether the PY sticky-sphere approximation may 
prove to be useful and appropriate in describing monodisperse systems with pair 
potentials for which the attractive wells are not extremely narrow is also con- 
sidered; it is noted that firm evidence concerning this question also appears to 
be lacking. Implications for systems near, but not in, the limit of zero attractive- 
well width are also considered, especially in terms of the relative size of the well 
width and the degree of size polydispersity in the repulsive cores. The possible 
pertinence of such considerations to colloidal systems is observed. The impor- 
tance of taking into consideration the extremely long equilibration times that 
can be expected for systems with very narrow attractive wells is also pointed 
out, in connection both with real colloidal systems and in computer simulations. 
It is further observed that in the Baxter limit sticky spheres described quantum 
mechanically are indistinguishable from hard spheres so described; near the 
zero-well-width limit, the quantal behavior hinges on the number of bound 
states and thus the well depth as well as the relative size of the de Broglie 
thermal wavelength and the well width. Related results and investigations 
relevant to the issues described above are cited. 
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1. I N T R O D U C T I O N  

In 1968 Rodney  Baxter published (1) the analytic solution of the Percus 
Yevick (PY) approximat ion  for a three-dimensional system of adhesive 
spheres in thermal equilibrium, treated classically. In  1985, with G . O .  
Williams, we found that  the model, when treated exactly rather than in the 
PY approximation,  is not  thermodynamical ly  stable in two or more  dimen- 
sions. This result was announced  and briefly discussed at the 57th Statisti- 
cal Mechanics meeting at Rutgers, 2 but an analysis has not  appeared 
heretofore in print. We give here the result using a simple argument  
that does not  require the tedious combinator ic  details of the original 
Stell-Williams demonstrat ion.  The argument  shows directly that the parti- 
t ion function for N sticky spheres does not  exist when N>~ 12. We also dis- 
cuss some other extensions of  the initial result---in particular, those relating 
to polydisperse systems of spheres. Since Baxter's work appeared, a 
thriving cottage industry has grown up a round  the use of the solution of 
the PY equation for this "sticky-sphere" model. 3 The Stell-Williams result 
calls into question the significance of that  solution, and one of the purposes 
of this paper is to examine some of the issues this raises. 

The model  Hamil tonian considered by Baxter is defined by the 
limiting case of a pair potential q)(r) with a hard core and square-well 
tail for which the well width w goes to zero as the well depth e goes to 
infinity in such a way that  the contr ibut ion of the well to the second viriai 
coefficient remains finite but nonzero.  We can realize this limit by letting 

f - i '  ) r<R - f l~0 ( r )=  In l + Rw 1 
12r ' R<r<R+w 

O, r>R+w 
(1) 

where f i=  1/kT, k is Boltzmann's  constant,  and T is the absolute tem- 
perature. Then, taking w ~ 0, we find that the limiting Bol tzmann factor 
becomes simply 

R 
exp -flq)(r)=-~f(r-R), r<<.R 

= 1 ,  r>R 
(2) 

2 The program of this meeting was published in J. Stat. Phys. 49:403 (1987). 
3 There were probably a few dozen such papers in the 1970s and early 1980s (see, e.g., ref. 2 

and references therein, which include a comprehensive set of 14 articles on sticky spheres 
published prior to 1977). Interest in the model and various extensions rapidly increased in 
the middle 1980s, in part due to the growing perception that it might be of considerable use 
as a colloid model. The rate of publication on the model continues to increase. We cite here 
only some representative examples. 14) A few more are cited in connection with specific issues 
below. 
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where ~ is a Dirac delta function. For  convenience we shall take R = 1 
below unless we state otherwise. The second virial coefficient is then, in the 
thermodynamic limit, 

B2 = -�89 f Ee - ~ ( r ) -  l l  dr = (2~/3) - (7z/6~) (3) 

where the integration is over an infinite volume. In this limit, the potential 
energy of interaction among N particles is taken to be the sum over the 
N(N-1)/2 pair potentials. For a finite system in a box of volume V, the 
wall-particle interaction that keeps each particle in the box must also be 
taken into account in the usual way. 

The model is easily generalized to d dimensions; it is convenient 
to normalize the well-strength parameter r so that for all d, 
B 2 = 2 a iv-  vz-1, where v is the volume of a hypersphere of diameter R. 
[In particular, for d =  1, we have v=  1 and the 12z in Eqs. (1) and (2) 
becomes z. For d =  2, v = z/4 and the 12z becomes 4z.] 

The Stell-Williams analysis is based upon on examination of the 
radial distribution function g(r), which we write as a Boltzmann factor 
times a cavity function, g(r)= e(r) y(r), e(r)= exp -3q)(r). In order for the 
system to be thermodynamically stable, certain integrability conditions on 
g(r) must be satisfied. For example, from the virial theorem (with P the 
pressure, and p the number density), 

~P 1 - P  f g ( r ) ~ r ) r d r  (4) 
p 2d 

the volume integral of rg(r) fl d~o(r)/dr [or  equivalently, of ry(r) de(r)/dr] 
must exist. 4 For  the adhesive-sphere model, for which e(r)= 
H(r) + const,  r - l g ( r - 1 ) ,  H(r) a step function, this means that the volume 
integral of ry(r)[cS(r- 1 ) + c o n s t . z  -1 d6(r- 1)~dr] must exist, which 
requires that y(1) be finite. Stell and Williams found that it is not. 
Expanding y(r) in p, one finds a 6(r-1) singularity of O(p ~~ for d = 3  
[O(p s) for d =  2] and increasingly more singular terms in all higher orders 
of p, not just at r =  1, but for an infinite discrete set of r values that 
becomes arbitrarily dense for sufficiently large r. [As a result, the volume 
integral over g(r)- 1 is nonintegrable, and the isothermal compressibility 
is well defined for no thermodynamic state.] In the p expansion of the 
pressure, for d =  3 no virial coefficients beyond the 1 lth are finite and for 
d =  2 none beyond the sixth are finite. 

4 The internal energy associated with the potential given by Eq. (1) has a logarithmic 
divergence in the sticky limit, as already noted by Baxter. (1) Since only changes in the inter- 
nal energy are typically of thermodynamic importance, the "infinite additive constant" this 
weak divergence represents does not in itself constitute a serious impediment to the use of 
the model. 

822/63/5-6-26 
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The possibility of thermal stability in the absence of convergent 
Taylor-series representations of pressure or correlation functions--a 
possibility that is realized in model fluids of charged particles as a result of 
shielding in the correlation functions--is not available in this model. The 
singularities that appear are far too robust to be resummed away. As we 
shall see below, the mechanism hinges crucially on the geometry of certain 
close-packed clusters of equal-sized hyperspheres involving 12 or more 
spheres in three dimensions and seven or more disks in two dimensions. If 
we were considering a polydisperse system of hyperspheres with a con- 
tinuous size distribution, the probability associated with the singularity- 
producing clusters of equal-sized particles would drop to zero and the 
stability-destroying mechanism that we have found would disappear. If one 
backs away from the sticky-sphere limit, one sees that what determines the 
thermal behavior of a polydisperse square-well model is the size of two 
length ratios--the square-well width w relative to the sphere diameter R 
and the standard deviation a(R) of the core diameter distribution about 
the mean diameter/~. When one takes the sticky limit for fixed o-(R)r  
one enters a regime [ w ~ ( R ) ]  in which thermodynamic stability is 
retained in the sticky limit, and for some range of a(R) the PY approxima- 
tion may well be as serviceable and reliable an approximation as it is for 
less singular potentials. If one then lets a(R) ~ 0, however, one can expect 
to lose thermodynamic stability, with the PY result becoming increasingly 
poor for sufficiently small a. Just how small, however, remains unclear. If 
instead one considers first taking the monodisperse limit a (R) -~0  with 
arbitrarily small but fixed w r 0 [-and well depth tuned as a function of w 
according to Eq. (1)], one can expect to enter a regime, a(R),~ w, in which 
one has thermodynamic stability, but with anomalous thermodynamics 
- - the  smaller w, the more anomalous the thermodynamics--that  is not well 
described by the PY approximation for w ~/~. If one then takes the sticky 
limit, the thermodynamics can be expected to become more and more 
anomalous, and one loses stability in this limit. How small w/R can be 
before the PY approximation becomes useless remains to be seen. 

We shall discuss some implications of these observations after giving 
some technical details concerning the singular sticky-sphere behavior. 

2. S O M E  TECHNICAL DETAILS 

We begin by summarizing the Stelt-Williams analysis of y(r), which 
utilizes the well-known graphical representation (5) of its density expansion 
in terms o f f  bonds, unlabeled (black) p-vertices, and two white 1-vertices 
labeled 1 and 2, respectively. (In our Figs. 2 and 3, we suppress the labels 
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1 'and 2 for visual clarity.) The graphs represent integrals devided by their 
symmetry numbers, with each f bond representing a function 

f ( r i j )  = e -~~ 1 

each black vertex representing integration over a volume as well as a 
number-density factor, p ~dri, and the two white vertices representing 
unintegrated-over variables r I and r2. 

In any spatial dimension d, the most singular contributions associated 
with each graph of the expansion of y(r )  come from integrand configura- 
tions in which the arguments rg of some or all of the f ( r ~ )  are of unit 
magnitude, so that f ( r u ) =  const. 3(r U- 1), and the arguments of all the 
other f ( r i j  ) are less than unity, for which the corresponding f ' s  have the 
value - 1 .  All such configurations can be themselves represented by graphs 
with straight-line f bonds of unit length and a prefactor ( -1 )n  associated 
with the n bonds evaluated at r o.< 1. In one dimension, only graphs that 
can be embedded in a line need be considered; in two dimensions, only 
planar graphs, etc. We shall these graphs representing the subset of 
integrand configurations that contribute to the singularities of the 
integrands the embedded graphs. Embedded graphs can be thought of as 
linkages consisting of rigid bonds of unit length joined with rotational 
freedom at the vertices. The subclass of such graphs that represent rigid 
bodies turns out to be the most important ones in our analysis--for a given 
number of vertices they prove to be the most singular ones. [Here we shall 
be primarily interested in embedded graphs associated with y(r )  and with 
the Q N - 2  (12) of Eq. (5), but it is also useful to consider embedded graphs 
associated with the QN of (7) and with the density and activity coefficients 
of In & where Z is the grand partition function. There again the rigid 
graphs play a key role.] 

For rigid embedded graphs it is convenient to introduce the notion of 
a degree of singularity b - d v  + O, where b is the number of bonds, v the 
number of black vertices, and 0 represents the number of orientational 
degrees of freedom available to the graph when the positions of the white 
vertices are fixed. For graphs with two white vertices, 0 -- 0 when d = 1 and 
2. When d-- 3, 0 = 1, except for the graph consisting of a single bond, for 
which 0 = 0. (For graphs with one white circle, which are of interest in 
analyzing the equation of state, 0 = 0 for d =  1, 0 = 1 for d =  2. For d =  3, 
0 = 3, except for the single-bond graph, for which 0 = 2.) One expects the 
rigid graphs associated with y(1) to have a positive index; when 
b - dv + 0 = 1, there is a 3-function singularity. When b - dv + 0 > 1, the 
singularity is nonintegrable. When one considers the graphs associated with 
y(1) for d-- 1, it is instructive to consider the case v--2 in some detail, and 
we illustrate this case in Fig. 1, which has been drawn and captioned to be 
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Mayer Graph Embedded Graphs of Degree b - v = 1 Singular 
Contributions 

3 4 3 4 3 4 

1 2 t 2 1 2 
1 2 

3 4 3 4 
- - ( - )  ~ + (-) ~ = 2&(r-l)/, 3 

1 2 1 2 
1 2 

3 4 3 4 

1 2 1 2 
1 2 

3 4 4 3 

- - 1 / 2  ~ 1  2 + 1 / 2  ~ 1  2 = ~(r'1)/1:3 

1 2 

- -  no embedded graph for which b - v > 0 

1 2 sum of singular contributions = 0 

Fig. 1. Graphs of order p2 contributing to y(r) at r=  1 in one dimension. There are 
g-function contributions from three of the four cluster integrals (Mayer graphs) contributing 
to y(1), but they cancel. Note that all of the embedded graphs represent configurations that 
are not physically realizable for four particles labeled 1, 2, 3, 4 because of their hard cores. 
Such unrealizable configurations do not contribute to y(1), which for d= t proves to be 
nonsingular. 

largely self-explanatory.  We see there that  all the s ingular  g-function con- 
t r ibut ions  cancel,  so they do not  appea r  in y(1);  they are all associa ted  with 
conf igurat ions  of four part icles  that  are physical ly  unreal izable  because of 
the ha rd  cores of the particles.  I t  turns  out  tha t  for any d such unreal izable  
con t r ibu t ions  do  not  con t r ibu te  to y(1);  only  real izable conf igurat ions  can 
cont r ibu te  to the s ingular  s t ructure  of y(r) or to the virial  coefficients of the 
equa t ion  of state. We note  that  the results in Fig. 1 immedia te ly  imply tha t  
for d =  1 bo th  the PY and  H N C  (hyperne t ted  chain)  app rox ima t ions  yield 
no t he rmodynamics  for d =  1 because they are bo th  lacking the br idge  
d i ag ram shown on the fourth line of graphs.  (This was first po in ted  out  by 

Hi ro ike  in a nongraph ica l  analysis  of the fourth virial  coefficient. (6)) 
The S te lPWi l l i ams  analysis  hinges on the "real izabi l i ty  theorem"  tha t  

only  real izable par t ic le  conf igurat ions  cont r ibu te  to s t icky-sphere  the rmo-  
dynamics ,  the t e rm-by- t e rm verif icat ion of which proves to be ext remely  
tedious.  One  can prof i tab ly  use the R e e - H o o v e r  C7)'5 f - b o n d ,  ( f +  1)-bond 
r e summat ion  of M a y e r  graphs  to ob ta in  the result  t h rough  the seventh 
virial  coefficient for d =  2. Wer the im ' s  (9) z-vertex, fR-bond ,  (s -mer)-hyper-  

5 See ref. 8 for the extension to graphs in y(r). 



Sticky Spheres and Related Systems 1209 

vertex expansions for ln-~, pl,  and p2g(r) provide the most powerful 
general means we have found for obtaining the result. His representation 
can be used conveniently to analyze the additivity expansions of those 
functions, since all singularities appear in the structure of the hypervertices. 
The results then can be used to immediately yield the singularities in the 
density expansions of In N and g(r) and to show that only realizable con- 
figurations can contribute to the singular structure of both the activity and 
virial coefficients. 

Here we shall follow a simpler approach to demonstrate directly the 
singularity in the cavity function at r = 1 and the lack of thermodynamic 
stability for a system of N particles when N~> 7 for d = 2  and N~> 12 for 
d =  3. It begins with the observation that for a canonical system of N 
particles in a box ~2 of volume V the pair distribution function g(rl,  r2) is 
given for rl and r2 in ~2 by 

g(r~, r2)= VZQN 2(12)/QN (5) 

where QN 2(12) is the configuration integral for two fixed particles in the 
system 

QN- 2(12) = f e - a ~ ( l  m dr3. . ,  dr u (6) 

and Q N is the configuration integral for free particles in the system 

QN = f e e~(1..-N) dr 1 ... dr N (7) 

Here ~b(1 . . -N) is the potential energy of the system. For convenience we 
shall consider a system of N -  2 sticky spheres and 2 particles labeled 1 and 
2, respectively, that interact as sticky spheres with the other N - 2  spheres 
but interact with each other as ideal-gas particles. Then g(rlr  2) is the cavity 
function y(rlr2). [In fact, one could let particles 1 and 2 interact as hard 
spheres without any change in our analysis, since we are only concerned 
with y(rlr2) for r >/1.] The wall-particle interaction will not enter our dis- 
cussion, but for simplicity we shall assume it to be a hard-sphere/hard-wall 
interaction for all particles, so that all the ~ dri in (6) and (9) are over the 
volume V available to the center of a hard sphere in the box, which is the 
same V that appears in Eq. (5). Then q~ can be taken to be simply a 
product of two-particle Boltzmann factors 

e(r o) = e R(r ij) + e A( r o.) (8) 

for all i < j  except i =  1, j = 2 ,  where eR is the repulsive hard-sphere term 
and e A the attractive b-function term. The e(r12) is 1. The integral in the 
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numerator of (5) can be expressed as a graph with N vertices, N - 2  of 
which are black and unlabeled and 2 of which are white and labeled 1 and 
2, respectively, with e-bonds representing the e(rij) of (8) between all pairs 
of particles except 1 and 2. 

It is clear that the most singular contribution to y(rlr2)  from 
QN 2(12) will come from the 6-function parts of the interaction. It is also 
clear that the eR parts of the Boltzmann factors prevent nonrealizable con- 
figurations of particles 1,..., N from contributing to the integrands of both 
QN_2(12) and QN. Thus when we consider the embedded graphs with 
eA-bonds associated with QN_2(12) and QN we need consider only 
realizable configurations. For simplicity, we shall also limit our discussion 
to rigid embedded graphs, which we can most simply order with respect to 
degree of singularity. For a given N, the most singular graphs are rigid. 

For  d-- 1, the only singular graph for each N is the chain graph and 
the 6-function singularity is integrable. There is no realizable embedded 
graph corresponding to y(rlr2)  at r12 = 1, however. For d =  2 the smallest 
N for which there is a h-function singularity in a realizable embedded 
graph of QN_2(12) is N = 4 .  The 6-function is loaded at r t2=xf3 .  The 
smallest N for which one finds a f-function singularity at r12 = 1 is N = 7. 
For d =  3 the smallest N for which there is a 6-function singularity in a 
realizable embedded graph of QN 2(12) is N = 5  and it is loaded at 
r12 = (8/3) 1/2. The smallest N for which one finds a f-function singularity at 
r12 = 1 is N--  12. The graphs corresponding to these singularities are shown 
in Fig. 2. For d = 2  and d = 3  there is an infinite number of graphs 
associated with Q N-2 (12) for large N that have nonintegrable singularities, 
both at r12-- 1 and at an infinite number of other r12 > 1. Two of these are 
shown in Fig. 3. 

Instead of investigating y(rar2) through QN_2(12) as we have just 
done, one can alternatively examine Q N directly for a system of N sticky 
spheres. Since the configurational Helmholtz free energy of the system is 
given by 

- -  f l F  C O N F  = in QN (9) 

one can determine for each d the smallest N for which QN is not finite. This 
determines the N for which the system becomes thermodynamically 
instable for fixed V. The analysis is much like that of QN_2(12), since the 
graphs are the same, except that all vertices are unlabeled and there is an 
additional e-bond. One finds that when d =  2, Q N becomes infinite for 
N>~ 7. When d =  3, QN becomes infinite for N~> 12; this is fully consistent 
with the results for Q N-2(12) and is probably the most direct approach to 
establishing the thermodynamic instability of the Baxter sticky-sphere 
model for d~> 2. It immediately implies that one loses stability in the ther- 
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modynamic limit for both d = 2 and d--  3. We note that it is clear that one 
similarly has no stability for d >  3. We also note that for the system used 
in analyzing QN_2(12), QN is still finite for N = 7  when d = 2  and for 
N - -  12 when d = 3 because of the absence of the e-bond between particles 
1 and 2. It is for this reason that we did not have to bring into the picture 
the behavior of the QN in the denominator of (5) when determining the N 
for which the behavior of y(r lr2)  becomes singular at r12 = 1. 

d = l  o = o o = �9 

b - v = 1  

Nx-18(r-2) N2x -3 5(r-3) 
(a) (b) 

d = 2  
b - 2 v =  1 

N2x -5 8(r- "~) N5x "11 g(r-1) 

(c) (d) 

d = 3  
b - 3 v + 1 = 1  

v 

N 3x-9 8(r- ~/8~) N10z-30 8(r-l) 

(e) (f) 

Fig. 2. The simplest realizable embedded graphs with g-function singularities in y(rlr2) for 
d = l  (a, b), d = 2  (c,d), and d=3  (e,f). The order in N and �9 of the 6-function and the 
r = [r I --r21 at which it is loaded is shown below each graph. The graphs for which the 6 is 
loaded at r = 1 are the lowest-order graphs (in both N and ~-1) that contribute to thermo- 
dynamic instability. With a bond between the pair of white vertices and those vertices 
blackened (increasing the power of both N and z-i),  these graphs carrying 6 ( r - 1 )  become 
the embedded graphs that give rise to the lowest-order singularities in the N-particle partition 
functions and in the activity (z) and density (p) expansions of/~P, the order in N corre- 
sponding to the order in z and p, respectively. 
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w w 

Fig. 3. Two of the infinite numbers of dangerous embedded graphs in d= 2 that represent 
nonintegrable terms in y(r). The first has a nonintegrable singularity at r = 2, the second at 
r = 1. Upon integration over the white vertices the graphs represent nonintegrable terms in the 
configuration integrals Qv and Q~9, respectively. 

An analogous analysis in the grand ensemble can be similarly made. 
Instead of a single QN_2(12) and QN for a given V, one must consider all 
the QN and QN 2(12) for N up to the close-packing N and form the grand 
partition function -~ and the corresponding activity series of Q N-2 (12) that 
defines the if(12) in the numerator  of the fraction ~(12) /3  that defines the 
two-particle density function p(r~r2). The divergences in QN for N~>7 
when d = 2 and N i> 2 when d = 3 mean that one always has these infinities 
in the Z (unless V is miniscule) and thus will have these infinities in 
In ~ for any value of the activity (unless V is miniscule). This again 
demonstrates thermodynamic instability. 

One can ask questions that require one to go beyond the analyses we 
have so far made here. They pertain to the structure of the density and 
activity expansions for an infinite system of square-well particles with a 
pair potential given by Eq. (1), as one goes to the sticky limit by letting 
w--, 0. Which terms in the expansions diverge? And how do they grow as 
a function of w? We have already directly verified that the seventh coef- 
ficient in two dimensions and the 12th coefficient in three dimensions are 
the lowest-order coefficients to diverge in both the density and activity 
expansions of the equation of state. The question of how fast the divergent 
coefficients frow as w--, 0 is a much more subtle question that we are 
currently investigating with Branko Borstnik. 

3. W H A T  D O E S  IT ALL M E A N ?  S O M E  R E M A R K S  

(i) In light of our analysis, what is one to make of the PY 
approximation for sticky spheres, or of the existing Monte Carlo simula- 
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tion results (1~ for sticky particles? With regard to the latter, it is clear that 
the "dangerous" large close-packed clusters that yield the singularities 
responsible for loss of thermodynamic stability have simply not been 
sampled. Here the situation is not too different from that which one would 
have for a slightly polydisperse system, where clusters such as those 
associated with the graphs of Fig. 2c for d = 2 and Fig. 2e for d = 3 will still 
occur with appreciable probability, because they can be realized by having 
four disks and five spheres all in contact, respectively, even when all the 
disks and all the spheres have different diameters. The bonds will no longer 
all be of unit length, but each bond f(ro. ) will still be of length equal to 
(Ri + Ri)/2, where Rk is the diameter of the sphere centered at rk. However, 
the "dangerous" clusters [associated with nonintegrable terms in g(r)] will 
only be found with zero probability in a polydisperse system, since they 
involve the geometry of equal-sized particles in order to be realized. [-Thus, 
for example, the graph of Fig. 2d with each f(ro) bond of length 
(Ri + Rj)/2, Rk all different, cannot be realized, and the graph of Fig. 2f 
cannot be realized with each f(ro ) of length (Ri+Rj)/2 such that 
r = (R 1 + R2)/2.] 

(ii) With respect to the status of the PY sticky-sphere approximation 
for d=  3, some of the same considerations appear to be relevant. First of 
all, one can formulate and solve the PY sticky-sphere approximation for 
d = 3 for a polydisperse system with a continuous size distribution. (In fact 
the solution is already implicit in the extension of Baxter's solution to 
mixtures with a discrete number of species made by Barboy. (11/) Such a 
system is free of dangerous clusters and hence appears to be thermo- 
dynamically stable so the PY approximation may well yield a reasonable 
assessment of some of its thermodynamic and structural properties, in 
much the same way that the approximation does for a number of other 
fluid models. There are certain dramatic structural features of the exact y(r) 
that are guaranteed to be missed by the PY approximation (such as the f- 
function contribution from the graphs appearing as Figs. 2c-2f), but such 
structural features may contribute little to, say, the physically important 
scattering function in Fourier space, because Fourier transforming will be 
a smoothing operation for such features and also because one averages 
over the size distribution in both R1 and R2 to get the scattering function. 
Moreover, when a(R)~ 0, the usual (single-diameter) PY result will be 
recovered from the PY polydisperse result and will be a good approxima- 
tion to that result for a(R) ~ R, where/~ is the mean diameter. In terms of 
certain real systems such as colloids, in which the solvent-averaged q~(r) 
may have an attractive well of range w that is very narrow compared to/~ 
and for which there can also be appreciable polydispersity, the possible 
relevance of the sticky-sphere PY approximation hinges in part on the 
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relative values of w and a(R). For w ~ a ( R ) ~ / ~  the usual monodisperse 
PY approximation might well be useful and appropriate, but for 
a(R) ~ w ~/~  the PY approximation will inevitably become poor when the 
ratios a(R)/w and w/_~ both become sufficiently small. An outstanding 
question is how small. There has been one comparison (12) of potydisperse 
sticky-sphere results for turbidity with experimental colloid results that 
suggests the sticky-sphere results are sensible and useful for the silica 
colloids used in that comparison. 

(iii) In the case of a strictly monodisperse system, the above con- 
siderations lead to the conclusion that as one takes the sticky limit, w--, 0 
in Eq. (1), starting with w = 1, say, the PY solution will begin to depart 
more and more drastically from the exact structure of the model, which 
becomes more and more anomalous, until in the limit, the model loses 
thermodynamic stability. One is at present hampered in seeing exactly how 
this comes about by the technical difficulties involved in backing away 
from the sticky limit in the cluster-integral analysis, but it seems likely that 
the "dangerous" cluster integrals are negligible until w becomes quite small, 
when they begin to diverge very rapidly and nonuniformly with the 
dangerous graphs of lower index b - dv + 0 at first numerically dominating 
the higher-index graphs, but then as w gets smaller and smaller, the higher- 
index graphs overwhelming the lower-index graphs. This picture leads to 
the conclusions--perhaps paradoxical at first glance--that  the PY sticky- 
sphere solution is a much more reasonable approximation for the potential 
of Eq. (1) when w is not very much smaller than R than when it is. 
However, if the limiting catastrophe outlined above is sufficiently non- 
uniform, one could imagine the thermodynamics becoming anomalous in a 
pronounced way only when w is very, very small--say, w~R/lO0 or 
R/1000 or R/10,000--so that the PY solution might track the true sticky- 
sphere behavior reasonably well over a very wide range of w values. We 
suspect this is the case. 

Our surmise is based in part on numerical studies we have already 
made with Tooker and with Devote on the behavior of relatively simple 
graphs (of too low index to be dangerous) as functions of T as one lets 
w ~ 0, and the attendant behavior of the first few virial coefficients, B(T), 
C(T), D(T), etc. One knows that in the w ~ 0 limit, B(T), C(T), and D(T) 
will be functions that discontinuously drop from their hard-sphere values 
to - ~  at a crossover temperature [the /~o of item (vii) below]. Similar 
discontinuities appear in the limiting behavior of the individual cluster 
integrals that sum up to give the first few virial coefficients. But one finds 
that the approach in B(T) and C(T) to these discontinuous functions of T 
as w ~ 0  is monumentally slow (nonuniform). For  example, even at 
w/R= 10 4 the B(T) and C(T) curves look a lot more like square-well 
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B(T) and C(T) curves for w/R = 1 than like the limiting discontinuous 
B(T) and C(T) curves. One might reasonably expect this nonuniform and 
sluggish approach to limiting behavior as w ~ 0 to persist in the higher- 
index integrals. If it does, it could mean that the quantitative effect of 
dangerous graphs will only be felt when w/R is extremely small. We are 
hoping that current work with Borstnik on the higher-index integrals will 
help illuminate this question. 

(iv) A method that has become more or less standard in applying the 
PY sticky-sphere solution to a potential that has an attractive well of non- 
zero range is to compute Bz(T) associated with the potential of interest 
and then to find a r(T) appropriate to that potential by equating that 
B2(T) with the right-hand side of Eq.(3). (We refer to this as the 
"B2 device" in our remarks below.) This provides a clean and extremely 
convenient way of using the sticky-sphere solution to describe the thermo- 
dynamics of pair potentials that include attraction that is not necessarily of 
extremely short range or, for that matter, of the form given by Eq. (1). Our 
results do not argue against doing this, although they suggest that the 
rationale for doing it is much more tenuous than heretofore realized. In 
particular, they make clear that the result can only be justified as a one- 
step approximation procedure rather than a two-step procedure that first 
involves approximating the model potential of interest as a sticky-sphere 
potential. 

We find that there seems to be only fragmentary evidence in the 
literature concerning the accuracy provided by the B 2 device. There is a 
study (13) over a few temperatures that suggests the device may be useful 
when w/R= 1/25 at those temperatures. One cannot expect the PY 
approximation to be reliable for low temperatures (i.e., r ~ 1) for any w if 
directly applied to the ~o(r) of Eq. (1); the graphs it neglects include those 
that become increasingly important as T or ~ -~ 0 for any fixed w. Using the 
PY sticky-sphere approximation for such a potential via the B2(T) device 
will certainly not remedy this deficiency, so that prudence dictates that the 
PY sticky-sphere approximation not be taken seriously for ~ small 
compared to 1, irrespective of the system to which it is being applied. 

(v) Adding Coulombic ~14~ or other soft tails to sticky spheres will not 
alter the divergences that we have been considering. Adding terms that give 
rise to steric hinderance effects that prevent the formation of the dangerous 
clusters will restore stability, however. Cummings and Stell ~15~ and Stell 
a n d  Z h o u  (16) have considered such "shielded sticky-shell" models, and Stell 
(unpublished work) has considered the use of n-body forces for n ~> 3 to 
produce the same effect. For example, in three dimensions, if one has a 
four-body potential that turns off the stickiness between all pairs of four 
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particles when the centers of the four particles are unit distance from one 
another, one will eliminate all dangerous terms in the cluster integrals. One 
will also eliminate the 6-function contributions from terms like that of 
Fig. 2e, which are integrable, but missing from the PY approximation. The 
resulting system could well turn out to be adequately approximated by the 
three-dimensional PY sticky-sphere approximation and represents another 
way of making sense of its results, albeit a somewhat artificial one. Still 
another way is to regard it as an approximation for a shielded sticky-shell 
model (15'~6) in which the shell diameter L is just slightly less than the core 
diameter R. 

(vi) Restricting the sticky surface associated with binary interactions 
to small enough areas (e.g., circles) so that there is steric hinderance 
preventing the dangerous clusters will also restore thermodynamic stability. 
In these models there is a step function of relative orientation multiplying 
the 6-function in Eq. (2). Such "sticky-spot" models have been considered 
by us (17) and also, in the limit of sticky points, by Wertheim. (18) Wertheim's 
model is also the limit of his more general model (9) in which square-well 
attraction between particles emanates from points within their hard inter- 
action cores. Wertheim's model goes back to Boltzmann, who considered 
it in detail in Chapter IV of Vol. II of his Gastheorie. ~9) 

A variant of the sticky-spot model is a sticky-sphere model in which 
the coefficient of the 6-function term in Eq. (2) is dependent upon the 
relative orientation of two particles in a continuous way. (2~ Whether the 
dangerous clusters are suppressed or not in such models depends upon the 
precise form of the orientational-dependent coefficient. 

(vii) It is important to point out that the behavior of the hard-core 
square-well model in which the well width w is extremely narrow and well 
depth e is extremely deep but fixed involves a number of considerations 
beyond those upon which we have been focusing. For such a model B2(T ) 
will be essentially that of a hard-particle system consisting of the cores 
alone for all T above a distinguished value To, below which B2(T) has a 
very large negative value with a very rapid crossover in a small range 
(A T)o about To. Clearly this will also be true of the first few higher virial 
coefficients (for the same To). Although the still higher coefficients that 
include the dangerous cluster integrals are too complicated to analyze in 
any detail, the picture that emerges irrespective of their precise behavior is 
that of a resulting thermodynamic phase surface that will have an 
extremely flat-topped coexistence curve in the T-p plane--almost a step 
function--out of which will rise a fluid-state/ordered-state coexistence 
region with nearly vertical boundaries in essentially the same position as 
the hard-hypersphere fluid-state/ordered-state coexistence curve. In other 
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words, above a critical temperature T c the system will be nearly 
indistinguishable thermodynamically from one of hard hyperspheres, but 
slightly below Tc it will be nearly indistinguishable from a closed-packed 
solid at zero temperature coexisting with vacuum. One can consider a 
limiting sequence of such systems by first taking the sticky-sphere limit for 
one fixed temperature corresponding to a fixed flo in Eq. (1) and then using 
this limit to determine a well depth e as a function of well width w for all 
temperatures, independent of temperature. In the limit w ~ O, which we 
shall call the ri0-1imit here, one expects a perfectly flat horizontal 
coexistence boundary in the T-p plane for 0 < p < PVL, where PvL is the 
density at which the hard-sphere fluid-state/ordered-state coexistence 
begins. In the Baxter sticky limit, e = e(w, fi) is temperature dependent, in 
contrast to the e = e(w, rio) we are contemplating here. If the dangerous 
cluster configurations were absent [for example, as a result of polydisper- 
sity with w~a(R)~R] ,  then To=(flok) -1 would be expected as the 
limiting critical temperature Tc in the rio-limit. In contrast, the Baxter limit 
(again, in the absence of the nonintegrable term as in the polydisperse ease) 
is equivalent to an expansion of temperature scale about the temperature 
To as one lets w ~ 0. In the Baxter limit, the infinitesimal temperature 
range (AT)o that shrinks to the single temperature T O in the rio-limit 
instead becomes the whole ~ range. (Note that, consequently, we lose one- 
to-one correspondence between fl and z values in the Baxter limit, unless 
we graft on "from the outside" some way of redefining a correspondence, 
such as the B2-device.) 

In the presence of the dangerous cluster configuration one can use an 
argument of Hemmer and Stell (2l) to assess the ri0-1imit. From it one con- 
cludes that for all d there is a transition temperature TT for all densities 
below which one has a two-phase state consisting of essentially close- 
packed crystal in equilibrium with a vapor that is essentially vacuum. For 
d up to at least 8, one expects 

r r  = qTo/2d (10) 

where q is the number of nearest-neighbor spheres surrounding a d-dimen- 
sional sphere at close packing. Thus TT= To for d =  1, TT=3To/2 for 
d = 2, and Tr = 2T0 for d = 3. (For d =  1, one needs an attractive tail of the 
pair potential that is infinitely weak and long-ranged in order to have a 
phase transition with a critical temperature Tc to begin with. But one can 
expect the "collapse transition" in the rio-limit even without the tail.) 

Boltzmann contemplated a system close to the rio-limit in Section 73, 
Chapter VI, Vol. II of Gastheorie. Referring to a pair of such atoms as 
"combined" if their centers are a distance between R and R + w of each 
other and letting n2 and n 3 refer to the number of dimers and trimers thus 
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formed, he concluded that "as soon as the atoms begin to combine at all, 
they will prefer to form aggregates containing a larger number of atoms. 
Something like liquification of a gas would then occur. Unfortunately, 
except for the case where n3 is small compared to n2, further calculations 
encounter difficulties that can scarely be overcome, so that it remains 
undecided whether one can obtain under this assumption laws of liquifica- 
tion similar to those provided by the van der Waals equation." For w not 
too much smaller than R, we have indeed come to expect liquefication for 
a square-well system similar to that predicted by van der Waals equation, 
and as one takes the/?o-limit, Eq. (10) gives one some quantitative measure 
of the avalanche that Boltzmann foresaw. Many interesting questions still 
remain. With Hemmer we considered this problem in the light of exact 
analysis of a one-dimensional model (21) and with Tooker (22) and J. Devore 
(unpublished) we are considering the /?o-limit in various perturbative 
approximations in three dimensions. 

(viii) In all of the above analyses, we have been speaking of the equi- 
librium properties of our models, but in taking the limits with which we 
have been concerned, the question of equilibration times is of such primary 
importance that one can scarely reach a full understanding of the issues we 
are considering without bringing it into the picture. To see why this is so, 
one need only ask how long one might expect it to take for the dangerous 
clusters to destroy thermodynamic stability if one started with a square- 
well system at a given equilibrium state and then suddenly took the Baxter 
sticky limit, w---, 0. It is perhaps surprising, but not hard to verify, that an 
elastic binary collision between sticky spheres is indistinguishable from an 
elastic binary collision between hard spheres of the same diameter and also 
that the probability of an n-particle collision, n >~ 3 (necessary for the for- 
mation of a bound-state cluster of two or more particles), is zero, because 
of the zero time duration of a binary collision. One sees therefore that the 
stickiness is invisible, so to speak--the model will equilibrate into a state 
of hard-sphere equilibrium. This is also what will happen if we suddenly 
take the/?o-limit, even if/?o is less than the/? of the system. 

In order to make thermodynamic sense out of such limits, it is most 
natural to instead require that they be taken with adiabatic slowness, so 
the system has a chance to reequilibrate through each step of the limiting 
process. It is a good thing one can imagine having an infinite amount of 
time at one's disposal in carrying out such limits, for as one comes closer 
and closer to the w ~ 0 limit (in the case of either the Baxter sticky limit 
or the /?o-limit) it can be expected to take a longer and longer time to 
approach equilibrium. 

If instead of rigid particles in a vacuum, one imagines the particles as 
solute particles in a solvent that can carry away energy (or as particles with 
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internal degrees of freedom that can absorb translational energy and reemit 
it in another form), then equilibration to the state distated by the equi- 
librium partition function is facilitated because it can take place entirely 
within the context of binary collisions. One can still anticipate enormously 
long time scales being necessary for the appearance of the large clusters 
that destroy thermodynamic stability in the sticky limit. In applying these 
considerations to real systems (e.g., colloids), where one must back away 
from the limit, this means that one can anticipate long-time-scale dif- 
ficulties in attaining true thermodynamic equilibrium for systems that 
include very deep and narrow contributions to the interpotential potential. 
In the study of colloids, for which the solvent-averaged colloid-colloid 
potential can include such a term, this time-scale aspect of the problem is 
indeed apparent and ubiquitous. 

This time-scale problem is closely related to the problem of arriving at 
configurations representative of true equilibrium states in Monte Carlo 
sampling. An important difficulty is that one can easily reach a state that 
has many earmarks of a local equilibrium state in a run that would drift 
slowly into an increasingly different state if continued indefinitely. Unless 
there is a definitive way of being assured that one is on some kind of 
plateau in making such runs, the data they represent can be highly 
misleading. The problem is particularly severe in systems in which the 
second virial coefficient is not finite, such as a colloid model with a DLVO 
pair potential as it is often defined. One knows that there is no true equi- 
librium for such a system, and it is therefore difficult to assess the 
significance of Monte Carlo results that describe its structure. 

(ix) So far, all our comments have been in terms of a nonquantal 
description of the systems under discussion. It is amusing to note that all 
effects of interparticle attraction associated with the Baxter sticky limit 
disappear when one uses a quantal description. As long as the de Broglie 
thermal wavelength 2 is large compared to w, the effect of the attractive 
part of the square-well potential will be greatly attenuated when one passes 
from a classical to quantal description, and in the Baxter limit, the effect 
will be totally lost. Thus Baxter sticky spheres viewed quantum mechani- 
cally are indistinguishable from hard spheres for all densities and nonzero 
temperatures. When one backs off from the w-~ 0 limit, interesting ques- 
tions emerge having to do with the thermodynamic character of the square- 
well system when both w and 2 are small compared to a. Some of these 
have been touched upon in the study by Hemmer and Stell, (21) and in a 
further rigorous investigation made by the author in collaboration with 
M. Penrose, O. Penrose, and R. Pemantle. (24) A new feature that emerges 
as being crucial in the quantum mechanical picture is the importance of 
bound states, which will occur for sufficiently large w. 
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